
Dr. Miguel A. Solis
Universidad Andrés Bello
November 12, 2024

Practical Introduction to Reinforcement Learning 
with Gym in Python

21st IEEE Latin American Robotics Symposium
Material available at

www.miguelsolis.info



Robotics



Disciplines

• Mobile Robotics

• Bio-inspired Robotics

• Intelligent Robotics

• Cognitive Robotics

• Evolutive Robotics

• Human-Robot Interaction

• Micro-Robotics

• Nano-Robotics

• Tele-Operated Robotics

• Swarm Robotics



Action and Perception

Image extracted from “Robotic Systems”, Kris Hauser, University of Illinois at Urbana-Champaign.



Decision Making

Ways of interacting between agent/environment:

- reactive: simplest way of decisión making through finite 

states machine (if A when X, then execute B leaving on Y) 



Decision Making

Ways of interacting between agent/environment:

- intelligent: behavior shaping through heuristics

- incremental learning: behavior shaping through

patterns recognition and prediction of outcomes from

the environment



Reinforcement learning

- Learning through interactions with environment.

- Applications

Sequential decisión problems

Adaptive systems



Reinforcement learning and conductism

Edward L. Thorndike – Animal Intelligence: An experimental

study of the associate processes in animals (1898).

Animal modifies its behavior according to trial-and-error 

interactions with the environment.



Reinforcement learning and conductism

- Agent perceives current state, s.

- Agent executes action, a, as output.

- Agent receives a reward, r, as reinforcement signal.



Markov Process

- A reinforcement learning problema is formally

formulated through an MDP.

- MDP: Markov Decision Process.

A given state comes from a (first-order) Markov

Process if and only if:



Reinforcement learning elements

A reinforcement learning problema, formulated as an MDP is

given by the tuple (S, A, T, R) where:

- S: set of states

- A: set of actions

- T: S x A x S → [0, 1] (transition function, unknown)

- R: S x A x S → (rewards function)

- : S → A (policy)



Reinforcement learning elements

State on time step k:

Action executed on time step k:

State-transition function:



Rewards

Policy

A policy is said to be optimal, if it maximizes the long-term reward



Return

Value function:

Constraints:

bounded

A policy is optimal if value function for that policy is optimal:



Toy example: Grid World

- States: location within the grid.

- Actions: up, left, right, down.

- Rewards: +1 , -1 , -0.1



Classical algorithms



Value Iteration

It consists on k iterations, until is small enough

(according to a given tolerance), with updates given by:



Toy example

- After 1 iteration:

- After 2 iterations:



Toy example

- After 2 iterations:

- On convergence:



Q values

Just as V(s) gives some value related to state, Q(s,a) gives some value to

taking a certain action on such state.

Optimal policy y   satisfies:



Q-learning

Image extracted from “Introduction to Q-learning with OpenAI Gym”, Gelana Tostaeva, Medium.

Consists on iterating over every (state,action) pair, for given

hyperparameters (alpha and gamma).

Update expression:

Assuming , then optimal action for every state could be

obtained by means of maximizing:



Toy example: Grid World

Algorithm does not iterate over the whole states space, just those

visited states.

This (toy) example is episodic (when agent gets to final state,

episode finish and a new episode starts with the agent starting

again).

Must pay attention to local optimum.



Toy example: Grid World

Local optimum stuck:

Including exploration



Taxi problem (Gym)



Actions

0: south

1: north

2: east (right)

3: west (left)

4: pick up passenger

5: leave passenger



States and Actions Space

Actions: 6

States: 500 (passenger_location, taxi_location, destination)

4 possible destinations

passenger_location:  4 possible locations for origin, or same

location as the taxi

taxi_location: 25 possible locations according to the map

Gym verification:

env.action_space

env.observation_space



Rewards

- Passenger left on correct location: 20 points

- Discount of 1 point anytime taxi moves with passenger without

arriving to destination

- Discount of 10 points for leaving passenger on illegal location



Python Notebook

12112024_Tutorial_MSolis.ipynb

Open with any Python Notebook Interpreter, or

colab.research.google.com



More examples



More examples

Ollino, F., Solis, M. A., & Allende, H. (2018). Batch reinforcement learning on a 

RoboCup Small Size League keepaway strategy learning problem. In 4th 

Congress on Robotics and Neuroscience, CRoNe 2018. CEUR-WS.

Deffensive strategy generation

State is composed by

- dist(Keeper, ball) , dist(Taker, ball)

- Dist(Keeper_Team_A, Keeper_Team_B)

- Dist(Keeper_Team_A, Taker_Team_B)

- Angle(Keeper_Team_A, Taker_Team_B)



Important challenges

Rewards design

Delay on actions execution

Tabular representation



Some current topics

- affordances

- continual reinforcement learning (open-ended)

(Object, Action, Effect)

Given an object and a certain action, what effect does it have?

Given an object and a desired effect, what is the required action?



Final questions?

(material available at www.miguelsolis.info)


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33

