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Robotics



Disciplines

• Mobile Robotics

• Bio-inspired Robotics

• Intelligent Robotics

• Cognitive Robotics

• Evolutive Robotics

• Human-Robot Interaction

• Micro-Robotics

• Nano-Robotics

• Tele-Operated Robotics

• Swarm Robotics



Action and Perception

Image extracted from “Robotic Systems”, Kris Hauser, University of Illinois at Urbana-Champaign.



Decision Making

Ways of interacting between agent/environment:

- reactive: simplest way of decisión making through finite 

states machine (if A when X, then execute B leaving on Y) 



Decision Making

Ways of interacting between agent/environment:

- intelligent: behavior shaping through heuristics

- incremental learning: behavior shaping through

patterns recognition and prediction of outcomes from

the environment



Reinforcement learning

- Learning through interactions with environment.

- Applications

Sequential decisión problems

Adaptive systems



Reinforcement learning and conductism

Edward L. Thorndike – Animal Intelligence: An experimental

study of the associate processes in animals (1898).

Animal modifies its behavior according to trial-and-error 

interactions with the environment.



Reinforcement learning and conductism

- Agent perceives current state, s.

- Agent executes action, a, as output.

- Agent receives a reward, r, as reinforcement signal.



Markov Process

- A reinforcement learning problema is formally

formulated through an MDP.

- MDP: Markov Decision Process.

A given state comes from a (first-order) Markov

Process if and only if:



Reinforcement learning elements

A reinforcement learning problema, formulated as an MDP is

given by the tuple (S, A, T, R) where:

- S: set of states

- A: set of actions

- T: S x A x S → [0, 1] (transition function, unknown)

- R: S x A x S → (rewards function)

- : S → A (policy)



Reinforcement learning elements

State on time step k:

Action executed on time step k:

State-transition function:



Rewards

Policy

A policy is said to be optimal, if it maximizes the long-term reward



Return

Value function:

Constraints:

bounded

A policy is optimal if value function for that policy is optimal:



Toy example: Grid World

- States: location within the grid.

- Actions: up, left, right, down.

- Rewards: +1 , -1 , -0.1



Classical algorithms



Value Iteration

It consists on k iterations, until is small enough

(according to a given tolerance), with updates given by:



Toy example

- After 1 iteration:

- After 2 iterations:



Toy example

- After 2 iterations:

- On convergence:



Q values

Just as V(s) gives some value related to state, Q(s,a) gives some value to

taking a certain action on such state.

Optimal policy y   satisfies:



Q-learning

Image extracted from “Introduction to Q-learning with OpenAI Gym”, Gelana Tostaeva, Medium.

Consists on iterating over every (state,action) pair, for given

hyperparameters (alpha and gamma).

Update expression:

Assuming , then optimal action for every state could be

obtained by means of maximizing:



Toy example: Grid World

Algorithm does not iterate over the whole states space, just those

visited states.

This (toy) example is episodic (when agent gets to final state,

episode finish and a new episode starts with the agent starting

again).

Must pay attention to local optimum.



Toy example: Grid World

Local optimum stuck:

Including exploration



Taxi problem (Gym)



Actions

0: south

1: north

2: east (right)

3: west (left)

4: pick up passenger

5: leave passenger



States and Actions Space

Actions: 6

States: 500 (passenger_location, taxi_location, destination)

4 possible destinations

passenger_location:  4 possible locations for origin, or same

location as the taxi

taxi_location: 25 possible locations according to the map

Gym verification:

env.action_space

env.observation_space



Rewards

- Passenger left on correct location: 20 points

- Discount of 1 point anytime taxi moves with passenger without

arriving to destination

- Discount of 10 points for leaving passenger on illegal location



Python Notebook

12112024_Tutorial_MSolis.ipynb

Open with any Python Notebook Interpreter, or

colab.research.google.com



More examples



More examples

Ollino, F., Solis, M. A., & Allende, H. (2018). Batch reinforcement learning on a 

RoboCup Small Size League keepaway strategy learning problem. In 4th 

Congress on Robotics and Neuroscience, CRoNe 2018. CEUR-WS.

Deffensive strategy generation

State is composed by

- dist(Keeper, ball) , dist(Taker, ball)

- Dist(Keeper_Team_A, Keeper_Team_B)

- Dist(Keeper_Team_A, Taker_Team_B)

- Angle(Keeper_Team_A, Taker_Team_B)



Important challenges

Rewards design

Delay on actions execution

Tabular representation



Some current topics

- affordances

- continual reinforcement learning (open-ended)

(Object, Action, Effect)

Given an object and a certain action, what effect does it have?

Given an object and a desired effect, what is the required action?



Final questions?

(material available at www.miguelsolis.info)
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